




DMR identification, specificity measurement and methy-
lation visualization. Two output formats are available:
tabular and graphical. The tabular output is a table of
DMRs entries with columns representing region informa-
tion, entropy, sample specificity and raw methylation
data. The graphical output allows the user to inspect the
raw methylation data pattern, DMR distribution on
chromosomes and genome information at UCSC
Genome Browser. The standalone and online version of
QDMR is provided at http://bioinfo.hrbmu.edu.cn/qdmr.
In addition, the source code is also open to the public.

Application of QDMR to the methylation profiles in
mouse

Finally, QDMR software was applied to analyse the
methylation data set which was detected by RRBS in
seven adult mouse tissues/cells of 9636 CpG islands (5).
The heat map of methylation in seven tissues/cells of
mouse demonstrated that QDMR also can quantify
methylation difference for mouse methylation data
(Supplementary Figure S11A). Most CpG islands ex-
hibited consistent hypomethylation across seven tissues/
cells, which is consistent with a previous finding that
CpG islands are often free of methylation in normal
somatic tissues (59). According to the threshold
HDMR=3.636 for seven samples, only 4% (397/9636)
of CpG islands were identified as T-DMRs
(Supplementary Table S11). It is implied that CpG
islands possess less tissues/cells differential methylation
which is consistent with the finding in human genome in
this article. There were less T-DMRs than N-DMRs in
each genome category, while the CpG islands in Up2kb,

50-UTR and Intron exhibited a smaller proportion of
T-DMRs than other genome categories (Supplementary
Figure S11B). The distribution of all the T-DMRs
identified by QDMR on mouse chromosomes was also
shown in the visualization module in QDMR software
(Supplementary Figure S11C). The total 326 genes that
are related to these T-DMRs showed enrichment for
organ development (Supplementary Table S11). For
example, there is a T-DMR in the promoter of gene
HOXA5 encoding a transcription factor which plays key
roles in differentiation of adult cells (60). Previous studies
have demonstrated that the methylation of this T-DMR is
involved in regulation of cell-type-specific expression of
gene HOXA5 (61,62), which was also shown in our
analysis (Supplementary Figure S12).

DISCUSSION

Shannon entropy, as a measure of the uncertainty
associated with a random variable, has been previously
used to carry out biological research, such as to identify
potential drug targets (29), to prioritize promoter activity
(63) and to measure tissue specificity of gene expression in
many tissues (30). Due to the unique characteristics of the
methylation data, a two-step optimization was performed
based on Shannon entropy. The main difference between
QDMR and Shannon entropy is that QDMR introduces a
weight to adjust the entropy, which makes significant im-
provement in quantification of methylation difference. In
order to show the impact of weighting, we selected three
methylation patterns as shown in Figure 7A–C from the
data in Figure 2B divided by 2, 10 and 100, respectively.

Figure 6. Relative modification intensity between CD4+ T cell-specific Hyper-T-DMRs and Hypo-T-DMRs. X-axis is 38 histone modifications in
CD4+ T cell. Y-axis is the relative modification intensity of histone modification between hypermethylated and hypomethylated T-DMRs. The
horizontal line represents the same modification intensity between CD4+ T cell-specific Hyper-T-DMRs and Hypo-T-DMRs. ‘Asterisk’ represents
those histone modifications with significantly different modification intensity between CD4+ T cell-specific Hyper-T-DMRs and Hypo-T-DMRs.
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With this process, the three new patterns in Figure 7 have
smaller fluctuation range compared with region in
Figure 2B. As shown in Figure 7, when the fluctuation
range of methylation becomes smaller, HQ from QDMR
becomes bigger, while both HO and HP have no change.
Therefore, the entropy adjustment process by weight plays
an important role in quantifying the methylation differ-
ence for regions with small methylation fluctuation range.
This methylation pattern is very common in genomes
with numerous CpG islands which have constitutive
hypomethylation among all samples.
There are two major differences between QDMR and

the previous methods in identification of DMRs. The first
difference is that QDMR identifies DMRs based on quan-
tified methylation difference, while previous methods
based on statistics or counting. The entropy derived
from QDMR can quantify methylation difference reason-
ably, and can reflect the biological characteristics of
methylation difference, such as methylation difference dis-
tribution, the relationship between methylation difference
and CpG density, and the association between methyla-
tion difference and gene expression difference. QDMR can
be used to quantify methylation difference among various
numbers of samples, which benefits from the mathematic-
al properties of Shannon entropy. Moreover, the thresh-
olds determined from methylation probability model can
be used to identify DMRs based on the quantified methy-
lation difference. The second difference of QDMR is its
adaptability to the number of samples. The previous
methods were designed for the particular data set with
the given numbers of samples in their works. Instead,
QDMR was developed for identifying DMRs for variable
sample numbers. Therefore, QDMR may be a more
suitable method for identification of DMRs from methy-
lation profiles with multiple samples.
QDMR is independent of specific methylation mapping

technique. Currently, nearly all of these techniques need
the pre-treatment of DNA before amplification or hybrid-
ization by three main approaches, including endonuclease
digestion, affinity enrichment and bisulphite conversion as
reviewed by Laird (22). For biological and historical
reasons, the methylation data is with measurement scale
from 0 to 1 (0=unmethylated, 1=100% methylated)

in most of methylation mapping techniques, especially
some sequencing-based techniques MethylC-Seq, RRBS,
MeDIP-seq and MSCC. QDMR works on the fraction or
percentage methylation across multiple samples, and
identifies DMRs in a quantitative way, which has not
been performed by previous methylation analysis.
QDMR can be used to analyse the methylation profiles
from most of the current methylation mapping techniques
as summarized in Supplementary Table S12.

With the emergence of cost-effective high-throughput
sequencing techniques (for example, single-molecule
sequencing and nanopore sequencing), it may become
less expensive to profile the methylation status in various
tissues and other states (9,22). The identification of DMRs
from those high-throughput data may be the foundation
of further functional genomics analysis. In addition to the
identification of T-DMRs, QDMR could be applied to
identify C-DMRs, D-DMRs, R-DMRs, Intra-DMRs,
Inter-DMRs and DMRs in other biological processes.
The quantification of methylation difference and identifi-
cation of DMRs in multifarious temporal and spatial
methylomes should provide comprehensive survey of
genome-wide epigenetic functions.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online.
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Figure 7. Importance of methylation range across samples. Three regions with different methylation range across samples are artificially synthesized
based on the methylation values in Figure 2B. (A) Methylation values are produced from Figure 2B divided by 2. (B) Methylation values are
produced from Figure 2B divided by 10. (C) Methylation values are produced from Figure 2B divided by 100.
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