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We report on an entropic edge detector based on the local calculation of the Jensen-Shannon divergence with
application to the search for CpG islands. CpG islands are pieces of the genome related to gene expression and
cell differentiation, and thus to cancer formation. Searching for these CpG islands is a major task in genetics
and bioinformatics. Some algorithms have been proposed in the literature, based on moving statistics in a
sliding window, but its size may greatly influence the results. The local use of Jensen-Shannon divergence is a
completely different strategy: the nucleotide composition inside the islands is different from that in their
environment, so a statistical distance—the Jensen-Shannon divergence—between the composition of two ad-
jacent windows may be used as a measure of their dissimilarity. Sliding this double window over the entire
sequence allows us to segment it compositionally. The fusion of those segments into greater ones that satisfy
certain identification criteria must be achieved in order to obtain the definitive results. We find that the local use
of Jensen-Shannon divergence is very suitable in processing DNA sequences for searching for compositionally
different structures such as CpG islands, as compared to other algorithms in literature.
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I. INTRODUCTION

The CpG dinucleotide �two adjacent nucleotides, cytosine
and guanine, joined by a phosphodiester bond� is generally
very deficient in mammalian genomes possibly due to me-
thylation, but it may appear clustered in “CpG islands” dis-
persed along the genome, especially close to or within the
genes. These CpG islands seem to play an important role in
gene expression regulation and cell differentiation �1�. In ad-
dition, the fact that they are mainly placed near the promoter
makes them useful to predict promoters and first exons in the
human genome �2,3�. The lack of definition up to now, and
the absence of a characteristic length of these pieces of ge-
nome information, together with their high functional ge-
nomic role, make the search for CpG islands one of the
present challenges to beat in bioinformatics and genomics.
Different methods to find these CpG islands along any DNA
sequence have been proposed, most of them based on mov-
ing statistics in a window sliding over the entire sequence.
The detected islands must satisfy some biological identifica-
tion criteria �3–6�. However, in these approaches the size of
the window is a very sensitive parameter.

Here we propose a totally different, window size indepen-
dent, strategy for searching for CpG islands. The central
point of the technique is that the CpG island is a piece of
DNA sequence compositionally different from the back-
ground. Thus, we propose the local usage of the Jensen-
Shannon divergence ��JS hereafter�, an information-theory
function which has shown to be a good measure of the com-
positional difference between two �or several� probability
distributions �7�. The adequacy of �JS is highlighted by the
fact that it is presently claiming attention from different
fields, becoming a central element within the set of statistical
measures of distance. Recent theoretical studies about gener-
alized �JS functions and their metric properties have being
achieved �8–12�. The authors and collaborators have devel-
oped methods based on �JS, namely, in basic and applied
image processing �13–16� and in sequence analysis �17–21�.
Applications to new and diverse fields are currently being
proposed �22�. However, it is noteworthy that the use of �JS

in sequence analysis �17–21� has been made globally to the
whole sequence.

In this paper, �JS is used in a local way to detect edge
positions associated with changes of composition in a DNA
sequence, by looking for the maximal �JS values between
two adjacent windows sliding along the sequence. CpG is-
lands are then identified as the regions between two such
edge points that satisfy the appropriate requirements.
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II. METHOD

A. �JS as a measure of the divergence between probability
distributions

The basic objective, common to many of the applications
mentioned in the Introduction, is to divide a sequence into
adjacent segments with different compositional structure by
using �JS as the discriminant function to measure the com-
positional distance between dinucleotide relative frequencies
taken as probability distributions. The properties of the �JS
function and the advantages of using it for these objectives
are shown in the literature �13,18,23�. For the sake of self-
containment, the most important rationale follows.

The �JS function, as an information-theory measure of
probabilistic divergence between the probability distributions
P1 and P2, is defined as

�JS�P1,P2� = H�1

2
P1 +

1

2
P2� −

1

2
H�P1� −

1

2
H�P2� , �1�

where H��p1 , p2 , . . . , pn��=−	 j=1
n pj log pj is the Shannon en-

tropy. The �JS function has several interesting properties: it is
nonnegative, bounded, and symmetric with respect to its ar-
guments. �JS satisfies the branching property and can be gen-
eralized to any number N of distributions P1 ,P2 , . . . ,PN
which are not required to be absolutely continuous. Another
interesting property of �JS is that the distributions can be
weighted, which has been used with advantage in segmenta-
tion by taking the weights as the relative sizes of the seg-
ments involved �16,17�:

�JS��1,P1;�2,P2� = H��1P1 + �2P2� − �1H�P1� − �2H�P2� ,

�2�

where �1=L1 / �L1+L2� ,�2=L2 / �L1+L2�. In addition, it is
noteworthy that the square root of the nonweighted �JS is a
metric �11�.

The weighted divergence �JS of a sequence segmented is
related to other information-theory functions. In particular, it
is proved that �JS is the mutual information between the
probability distribution of the basis and that of the N seg-
ments �18�. That is to say, by randomly choosing a letter in
the sequence, the first means the probability distribution
about the basis, Pb; the second is about what segment the
letter belongs to, Ps �18�:

�JS�P1,P2� = I�Pb,Ps� = H�Pb� + H�Ps� − H�Pb � Ps� ,

�3�

where Pb= �pA , pT , pC , pG�, Ps= ��1 /L ,�2 /L , ¯ ,�N /L�, L
=�1+�2+ ¯ +�N, and H�Pb � Ps� is the corresponding bi-
variate probability distribution. Thus, �JS quantifies the infor-
mation provided by saying “what symbol a letter is” about
“what segment may it belong to,” or equivalently, “what seg-
ment a letter belongs to” about “what symbol may it be.”

On the other hand, the weighted �JS is equal to the
average—with the same weights—of the Kullback-Leibler
relative entropies K of the distributions of symbols in the
segments with respect to the overall symbol distribution in
the sequence �12�:

�JS��1,P1;�2,P2� = �1K�P1,P� + �2K�P2,P� , �4�

with K�Pi ,P�=	 jpij log�pij / pj�, P=�1P1+�2P2.
In this sense, �JS can be seen as the average gain of infor-

mation obtained when the sequence is being described by the
weighted segment distributions, instead of by the overall se-
quence distribution. All these relationships reinforce the
meaning of �JS as a measure of the divergence between prob-
ability distributions.

B. Symbolic sequence entropic segmentation

In the literature �17–21� �JS has been applied to symbolic
sequence segmentation in a global way by comparing the
two sides of the entire sequence currently in process. How-
ever, when the pieces of sequence to segment are of very
different sizes, and commonly much shorter than the whole
sequence �typically less than 1 kilobase pairs�, it is better to
apply �JS locally by comparing two adjacent regions of the
genome. Thus the borders between regions of different com-
position may be detected. It is noteworthy that this approach
is better than traditional methods for searching for CpG is-
lands which use moving statistics over a sliding window
along the sequence �3–6�. This is because the absence of a
characteristic length in CpG islands makes them difficult to
detect with a single window of fixed size. In fact, these ap-
proaches prove to be very sensitive to window size �19�.
Therefore, the local use of �JS proves to be a powerful task to
detect not only CpG islands but also short compositionally
different regions with no characteristic length along the ge-
nome.

C. CpG island detection method

As pointed out above, the local application of �JS to the
DNA sequence may be used to detect regions of different
composition. In particular, it may be used with benefit in the
search for CpG islands. The whole procedure is described in
three stages: �1� the calculation of local Jensen-Shannon di-

FIG. 1. The original DNA sequence is composed of adenine,
guanine, cytosine, and thymine �A ,G ,C ,T�, and eventually N when
masked or unknown. The algorithm first encodes the DNA sequence
to binary, being 1 if a CG pair is found and 0 otherwise. A sliding
double window then runs the binary sequence and the weighted �JS

is calculated at each position, as shown. As is customary, base 2 is
used hereinafter for logarithms.
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vergences along the sequence; �2� the detection of the edges
of the segments, as local maxima of the Jensen-Shannon di-
vergence; and �3� the fusion of segments into the definitive
ones, according to certain identification criteria. These steps
are summarized in Fig. 1.

1. Jensen-Shannon divergence calculation

In order to avoid misdetections of CpG islands the se-
quence is analyzed for repetitive sequence content, and the
repeats called Alus �5� are masked using a well-known algo-
rithm �REPEATMASKER �24��. Then, the masked DNA se-
quence must be converted into a convenient binary sequence
by assigning 1 to a CG pair and 0 to any other pair �over-
lapped� along the sequence �see Fig. 1�. Next, �JS is calcu-
lated between the relative frequencies of symbols in both
sides of the window for each position on the sequence. As
the sequence is now binary, the probability distribution in
each window is just P= �p ,1− p�, p being the probability of
having a CG pair. Since the two sides of the window could
eventually not have the same size due to lack of information,
such as in the beginning and ending of the sequence, the
weighted �JS is computed in general �see Fig. 1�.

2. Edge detection

Once �JS is computed along the entire sequence, all local
maxima might be identified with edges between composi-
tionally different regions. However, not all local maxima
have to be due to significant differences in composition; they
may be due to statistical fluctuations. Thus, an efficient and
fast method for identifying the reliable maxima must be per-
formed based on the idea of adequately reducing the search-
ing space. This is done here by the simultaneous use of two
parameters: a divergence threshold, below which the maxima
are not statistically significant, and a sampling interval which
is the minimum distance expected between significant local
maxima, which permits every local maximum to be roughly
located first and then finely determined. The algorithm first
looks for the maximum of �JS in the whole sequence, and
then tries to find the next local maximum above the diver-
gence threshold and using the sampling interval. This proce-
dure is repeated at each side of the global maximum. Note
that the located significant maxima have divided the entire
sequence into adjacent segments of different dinucleotide
composition.

The value of the divergence threshold may be chosen
based on the fact that in any large enough segment of mam-

TABLE I. Mean values for the training set using the proposed algorithm and CPGPROD for comparison.
The window size is denoted by w. Four significant digits are shown.

Mean TP TN FP FN Qsn Qsp

w=100 bp 1.714�103 1.172�105 1.719�103 0.2858�103 0.8692 0.5270

w=200 bp 1.716�103 1.164�105 1.704�103 0.2887�103 0.8764 0.5324

w=500 bp 1.631�103 1.174�105 1.569�103 0.4454�103 0.8177 0.5520

w=1000 bp 1.690�103 1.170�105 1.506�103 0.4262�103 0.8462 0.5522

w=2500 bp 1.729�103 1.178�105 1.487�103 0.4999�103 0.8280 0.5556

CPGPROD 1.676�103 1.160�105 1.824�103 0.2658�103 0.8706 0.4877

FIG. 2. Sensibility Qsn and
specificity Qsp values when the
window size is varied from 100 to
2500 bp. Sampling interval is
fixed at 5 bp. CPGED is the pro-
posed method.
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malian DNA the minimum proportion of CG pairs needed to
justify a significant deviation from the statistical fluctuations
is established as 7% �5�. Thus a threshold value of 0.001 was
chosen, which is equivalent to a deviation less than 1.5%
with respect to the 7% of CG pairs in the segment. This
choice is compatible with the order of the observed size of
random fluctuations in �JS. In addition, the final value of the
threshold proves not to be critical in the results. On the other
hand, the value of the sampling interval is empirically estab-
lished, as will be discussed in Sec. III.

3. Fusion of segments

From all the segments in the previous step, we have to
identify those that are CpG islands, or whose fusion gives
rise to CpG islands. Thus, the method must check all pos-
sible fusions of one or more segments, giving priority to
length—hence checking first the entire sequence. Any fusion
is found to be a CpG island if it satisfies some statistic cri-
teria, following biologists: length greater than 500 base pairs
�bp�, percentage of both nucleotides C and G greater than
55%; ratio of observed to expected �defined as the number of
CpG divided by the product of the percentages of C and G
nucleotides �4�� greater than 0.65 �3,5�, and, as said before,

percentage of CG pairs greater than 7% �5�. In such a case
the CpG island is definitive, and no longer considered by the
algorithm.

III. RESULTS

To check the prediction capacity of the proposed method
we initially divided a set of human DNA sequences from
GenBank into two sets �400 contigs each�: one for training
the procedure, and the other for testing it. The training is
performed in order to optimize the values of the window size
and the sampling interval, and to verify how robust the
method is under a little variation in any of those parameters.

Our CpG island identification is related to the CpG island
location annotated in the contig. Thus, if the proposed
method correctly identifies a CpG island according to the
annotations, our prediction is true positive �TP� or negative
�TN�, respectively. If the algorithm predicts a CpG island in a
location that is not annotated in the contig, a false positive
�FP� occurs, and if the method does not predict an annotated
CpG island, a false negative �FN� takes place. Two quality
measures may be built from these quantities �3�: the sensi-
tivity Qsn=TP / �TP+FN�, the proportion of TP predictions out

TABLE II. Mean values for the training set using the proposed algorithm and CPGPROD for comparison.
The sampling interval is denoted by s. Four significant digits are shown.

Mean TP TN FP FN Qsn Qsp

s=5 bp 1.727�103 1.167�105 1.730�103 0.2863�103 0.8806 0.5317

s=10 bp 1.716�103 1.164�105 1.704�103 0.2887�103 0.8765 0.5324

s=50 bp 1.730�103 1.170�105 1.642�103 0.3302�103 0.8626 0.5507

s=100 bp 1.709�103 1.172�105 1.582�103 0.3782�103 0.8464 0.5644

CPGPROD 1.676�103 1.160�105 1.824�103 0.2658�103 0.8706 0.4877

FIG. 3. Sensibility Qsn and
specificity Qsp values when the
sampling interval is varied from 5
to 100 bp. Window size is fixed at
200 bp. CPGED is the proposed
method.
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of the total number of actual positives, and the specificity
Qsp=TP / �TP+FP�, the proportions of TP’s out of the total
number of predicted positives. These two measures must be
as high as possible for a good prediction result, but it should
be taken into account that for our purposes values of FP
could be more acceptable than FN ones. This is because the
CpG islands associated with promoters are the only biologi-
cally interesting ones, and this association is more probable
if the island is large. Thus, Qsp may get relatively low values
although this may be not such a bad result.

In the training set five window sizes were probed with a
fixed sampling interval of 10 bp: 100, 200, 500, 1000, and
2500 bp. Results are shown in Table I and in Fig. 2, along
with the results obtained with the recent and accurate CPG-

PROD algorithm of Ponger and Mouchiroud �3�. Two conclu-
sions may be extracted: the best choice is the 200 bp win-
dow, and the algorithm is very robust against changes in the
window size as expected. This is very important because the
traditional window based algorithms were very sensitive to
this parameter.

In order to find the best choice of the sampling interval
value we run the algorithm with 5, 10, 50, and 100 bp, with
fixed 200 bp window size. Results are shown in Table II and
in Fig. 3, indicating that the best value for the significant
interval is 5 bp, and that the algorithm is certainly not sen-
sitive to variations in this parameter.

Once the parameters are trained, the test set is used to
check the prediction ability of the method. CPGPROD is used
for comparison. As may be seen in Table III, the performance
of the proposed algorithm is better than CPGPROD, not only in
Qsn but even in Qsp. It is noteworthy that this method, as
previously trained, has been used in the detection of the CpG
islands in the human chromosome 22 obtaining as a prelimi-
nary result that some island sizes are much larger that sup-
posed up to now �up to 30000 base pairs�.

IV. DISCUSSION

In this article an entropic edge detector �or cut points
detector� based on the local use of the Jensen-Shannon di-

vergence is presented, and some of the mathematical proper-
ties useful for the task are also outlined. The detector proves
to be a powerful tool to analyze DNA sequences in order to
segment compositionally different regions in the genome. In
particular, this method turns out to be very useful in the
search for CpG islands in the human genome. As can be seen
in the shown results, the method is very robust against
changes of any of its three eligible parameters. This means
that there is no necessity of a complex training procedure to
adjust the searching method parameters to our particular
problem at hand. At the same time, the settings of the method
do not depend critically on the island features to be detected.

Another remarkable feature is the general searching strat-
egy used. Previous work �3–6� use a single window to look
inside for an island. This strategy inherently lacks complete-
ness since an island is primarily defined in relation to the
background �ocean� in which it is immersed; therefore the
edge island-ocean must be detected. That is why we propose
a sliding double window with fixed size along with a fusion
criterion and procedure to merge nearby islands. In addition,
the method proposed to discriminate CpG islands from the
background is completely different from previously pub-
lished ones. While these algorithms are based on moving
statistics, here the �JS function is used to segment the se-
quence into regions of different composition.

The proposed algorithm has been trained with a set of
contigs and then applied to another set, both sets from Gen-
Bank and larger than 400 DNA chains. Numerical results
show than our method is better than CPGPROBD �3� in both
the sensibility Qsn and the specificity Qsp mean values.

The described results back the local use of �JS as an edge
detector when applied to DNA sequences, and make it a
worthy choice to be considered in other types of searches,
with adequate codification.
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