
Manual for
gCluster

Last updated: 05/04/2017

Developed and maintained by:

Computational Epigenomics and Bioinformatics Group
Dept. of Genetics & Inst. of Biotechnology,
University of Granada, Spain

Questions and feedback: hackenberg@ugr.es

http://bioinfo2.ugr.es/

Content

1. Preparation of the protocol .. 3

a. Using gClusterVM ... 3

b. Using standalone executables ... 3

2. Prepare the sequences: prepareAssembly.py, makeSeqObj.jar and
randomizer.jar ... 3

a. prepareAssembly.py .. 3

b. makeSeqObj.jar ... 4

c. randomizer.jar ... 4

3. Determine local clusters of DNA words and its global clustering
properties: gCluster ... 5

a. Calculate clustering properties ...5

b. Detect the clusters of DNA words ... 6

4. Clusters of clusters: GenomeCluster.pl .. 6

5. Determine the methylation of CpG Islands: NGSmethDB_API_client.py
 7

6. Calculate differential methylation: calcDMIs.py 8

1. Preparation of the protocol

You can follow the protocol in two ways:

a) Install the executable files.
b) Use gClusterVM, a virtual machine with all that you need.

Both options work on most of operating system (Windows, Mac OS X, Linux and
Solaris).

a. Using gClusterVM

 Download and install VirtualBox (Windows, Mac OS X, Linux and Solaris are
supported). Install also the VirtualBox Extension Pack.

 Download gClusterVM OVA file and import it on VirtualBox by double-clicking.

 Configures the machine virtual: allocated memory (minimum: X GB), CPUs
assigned (minimum: X) and folder shared for exchange files with the machine
virtual (highly recommended).

 Run the virtual machine.

b. Using standalone executables

To use standalone executables, first you must follow the following steps:

i) Download and install Java 8 or higher.

ii) Download and install Python 3.4 or higher. Important:

check the option ‘Add to the PATH’ during the installation.

iii) Download and extract the standalone executables.

iv) Open a terminal to execute the commands of the protocol or in this

manual. If you are using windows, you can use CMD or PowerShell.

In the following sections we will describe in detail the features of all programs with
usage examples.

2. Prepare the sequences: prepareAssembly.py,
makeSeqObj.jar and randomizer.jar

a. prepareAssembly.py

It can obtains an assembly (from UCSC) and extract canonical sequences from it. It also
works with local assembly files.

Input parameters

 -i <path or URL>: Path or URL to multi-FASTA file (.fa, .fa.gz,.fa.tar.gz, .bz2)

 -u <UCSC id>: UCSC assembly ID (e.g. hg38)

 -l <label>: Label for output files. (Default: ‘assembly’)

 -o <outdir>: Path to output directory, default current directory

https://www.virtualbox.org/wiki/Downloads
https://www.java.com/en/download/
https://www.python.org/downloads/

 -r <regex>: REGEX to filter canonical or non-canonical chromosomes.

REGEX to filter canonical chromosomes must be precede$

Output files

In the output folder two files will be generated:

 ‘label’_canonical.fa: multi-FASTA file that contains all canonical

chromosomes sequence.
 ‘label’_noncanonical.fa: multi-FASTA file that contains all non-canonical

chromosomes sequence.

Extract canonical sequences from assembly (from local file):

python prepareAssembly.py -i /home/meth/sequences/hg38.fa -o
/home/meth/sequences

Obtain assembly and extract canonical sequences (from UCSC):

python prepareAssembly.py -u hg38 -o /home/meth/sequences

b. makeSeqObj.jar

It index the ‘FASTA’ input files in order to make them faster accessible. With an
‘assembly.fa’ input file it generates an ‘assembly.zip’ file which, in turn, is the input file
for the programs described below.

Input parameters

 ‘assembly’_canonical.fa: Multi-FASTA file of the genome assembly.

Output files

 ‘assembly’.zip file, that should be used for all the subsequent analyses.

 ‘assembly’_canonical.N: file with the coordinates of the N-runs in the

assembly.

 ‘assembly’_canonical.chromSize: chromosome size file.

All of them will be created in the same folder as input

java –jar makeSeqObj.jar /home/meth/sequences/hg38_canonical.fa

c. randomizer.jar

Randomizes DNA sequences preserving the dinucleotide frequencies.

Input parameters

 ‘assembly’.zip file generated by makeSeqObj.jar

Output files

 ‘assembly’_random.zip file. It would be created in the same folder as input.

java –jar randomizer.jar /home/meth/sequences/hg38_canonical.zip

3. Determine local clusters of DNA words and its
global clustering properties: gCluster

gCluster could determine the local clusters of a given DNA word (CpG islands if the
DNA word is ‘CG’) and its global clustering properties. It can work on both strands (for
non-palindromic words) and accepts any combination of DNA words (like
CAG:CTG:CCG for the methylation context CHG).

The following parameters are all possible options of gCluster. In the above sections it
would be detailed which parameters must be set for each analysis.

Input parameters:

 genome=<path>: the indexed multi-FASTA file (see ‘Prepare the sequences’

section above).

 output=<output folder>: the output folder where the results will be written.

 pattern=<the k-mers>: the k-mers (DNA words) that should be analysed,

eg. Pattern=CG to obtain CpG islands. For detection of CWG cluster,

pattern=CAG:CTG should be used.

 writedistribution=<boolean>: write out the observed and expected

distance distribution (default writedistribution=false)

 chromStat=<boolean>: if true, the program writes out additional

information of the chromosome sequences like G+C content, CpG frequencies

(observed/expected ratios), lengths, etc. (default: chromStat=false)

Output files:

 cluster.txt: The clusters identified by its chromosomal coordinates and p-

value adding basic compositional statistics like G+C content and O/E ratios of

the pattern (the number of observed patterns divided by the number of expected

pattern). In case of a compound pattern like CAG:CTG, the mean O/E ratio is

calculated.

 CVnor.txt: The file holds the normalized coefficient of variation for each

chromosome.

 *.distr files: The distance distribution, the observed and expected frequencies

as a function of next-neighbour distance.

 log.txt: A log file

 stat.txt: A basic statistic as a function of chromosome, i.e pattern frequency,

G+C content, lengths and contig length (the sequence length minus the sum of

all N’s)

a. Calculate clustering properties

mkdir /home/meth/results (generates the ‘results’ output directory)

java –jar gCluster.jar genome=/home/meth/sequences/hg38_canonical.zip
pattern=CG output=/home/meth/results/hg38_CG writedistribution=true

chromStat=true

IMPORTANT: writedistribution and chromStat parameters must be set to ‘True’ to
obtain clustering properties.

b. Detect the clusters of DNA words

CpG islands:

With the following command (same as above), the clusters are automatically
determined and written to the cluster.txt file. The distance threshold is determined by
the genome intersection.

java –jar gCluster.jar genome=/home/meth/sequences/hg38_canonical.zip
pattern=CG output=/home/meth/results/hg38_CG writedistribution=true

chromStat=true

Clusters of other, biologically relevant k-mers:

Like mentioned before, in plants cytosine can be methylated as well in other contexts
like CWG (CAG, CTG), CCG or CHH.

The clustering of these contexts can be calculated with the following command.

java –jar gCluster.jar genome=/home/meth/sequences/ hg38_canonical.zip
pattern=CAG:CTG output=/home/meth/results/hg38_CWG

writedistribution=true chromStat=true

4. Clusters of clusters: GenomeCluster.pl

GenomeCluster determines the local clusters of genome elements identified by its
chromosome coordinates. It could be used to cluster the clusters predicted by gCluster,
in order to make clusters of cluster.

Input parameters (the arguments must be given in this order):

 Argument 1: the distance model <element; start; middle; end>.

 Argument 2: the BED file within the chromosome coordinates of whatever

genome element (e.g. CpG islands).

 Argument 3: the distance threshold model <gi: genome intersection; ci:

chromosome intersection; N (integer): percentile>.

 Argument 4: the p-value threshold (by default 1E-5 as in gCluster).

 Argument 5: the chromosome size file created by makeSeqObj.jar (see

‘Prepare the sequences’ section above).

 Argument 6: the file with the N-runs created by makeSeqObj.jar (see ‘Prepare

the sequences’ section above).

 Argument 7: the maximum number of allowed Ns between two elements. It

must be an integer greater or equal to 0 (default: 0).

Output files:

 *_genomeIntersec_start_GenomeCluster.txt: there are as many of these

files as chromosomes in the assembly. They are tabular files with the columns

described below.

Columns in
outfile

Description

Chrom Chromosome where the local cluster belongs.
From Start chromosome coordinate of the local cluster.
To End chromosome coordinate of the local cluster.
Length Length of the local cluster.
Count Number of genome elements within the local cluster.
PValue P-value of the local cluster.
logPValue Decimal logarithm of the p-value.

perl GenomeCluster.pl start /home/meth/results/hg38_CG/cluster.txt gi
1E-5 /home/meth/sequences/hg38_canonical.chromSize

/home/meth/sequences/hg38_canonical.N 0

5. Determine the methylation of CpG Islands:
NGSmethDB_API_client.py

In order to calculate differentially methylation CGIs, we will have to obtain first the
methylation values for the CpG islands from our database and second, compare the
methylation values between two samples. To obtain the methylomes, we will use
NGSmethDB_API_client.py executable.

Input parameters:

 -i <input bed file>: in general, BED3 files will be accepted (only the first 3

columns will be considered), including the ‘cluster.txt’ output files generated by

gCluster

 -o <output folder>: output folder

Output files:

 <sample>.CG.meth.tsv: Contains the CG methylation data for all regions

defined in the bed data input file. There is one <sample>.CG.meth.tsv file for

each selected sample. Each line corresponds to one region.

Columns in
outfile

Description

ID chrom_start_end
refPatt Number of CpGs within the region in the reference genome
indPatt Number of CpGs in the region for the genotype of the

sample
meanMR Mean of CpG methylation ratio distribution
sdMR Standard Deviation of CpG methylation ratio distribution

http://bioinfo2.ugr.es:8080/NGSmethDB/

p10MR Percentile 10 of CpG methylation ratio distribution
q1MR Quartile 1 of CpG methylation ratio distribution
q2MR Median of CpG methylation ratio distribution
q3MR Quartile 3 of CpG methylation ratio distribution
p90MR Percentile 90 of CpG methylation ratio distribution
totalMC Total number of methylcytosines in the region
totalC Total number of mapped reads within the region

 <sample>.CHG.meth.tsv (plants only): Same as above, but for CHG.

python NGSmethDB_API_client.py -i /home/meth/results/hg38_CG/cluster.txt -
o /home/meth/results/methylationData

6. Calculate differential methylation:
calcDMIs.py

 Takes the output files from NGSmethDB_API_client.py for two samples and
calculates statistically significant differentially methylated CpG islands between them.
The statistical significance is assessed by means of a Fisher exact test.

Input parameters:

 -a <sample1 file> and –b <sample2 file>: output methylation files from

NGSmethDB_API_client.py

 -o <outfile>: output file. Default is ‘outputDMIs.txt’

 -p <pvalue>: p-value threshold for DMIs. Default is 1E-5.

Output files:

 <outfile>: a file containing the differentially methylated CpG islands.

Columns in
outfile

Description

ID chrom_start_end
mC_Sample1 Number of methylcytosines for each cluster in sample 1
reads_Sample1 Number of reads for each cluster in sample 1
mRatio_Sample1 methRatio (mC_Sample1/reads_Sample1) for each cluster

in sample 1
mC_Sample2 Number of methylcytosines for each cluster in sample 2
reads_Sample2 Number of reads for each cluster in sample 2
mRatio_Sample2 methRatio (mC_Sample1/reads_Sample2) for each cluster

in sample 2
diffMeth Absolute difference between methRatio_Sample1 and

methRatio_Sample2
pvalue Statistical significance assessed by means of the Fisher

exact test

python calc_DMIs.py –a home/meth/results/methylationData/STL003.gastric.CG.meth.tsv
-b /home/meth/results/methylationData/STL003.pancreas.CG.meth.tsv -o

/home/meth/results/methylationData/STL003.gastric.STL003.pancreas.DMIs.txt -p 1E-5

