Regulación Génica 1

Introducción

Descripción

En este tema se abordará la regulación de la expresión génica, es decir, cómo los organismos procariotas y eucariotas controlan la activación o represión del flujo de información contenida en su ADN para la síntesis de productos funcionales.

Objetivos

Comprender la importancia fundamental de la regulación de la expresión génica

Comprender las principales diferencias entre la regulación génica en procariotas y eucariotas.

Comprender los principales mecanismos de regulación génica en eucariotas a diferentes niveles:

Cromatina
Transcripcional
Postranscripcional
Traduccional
Postraduccional

Comprender la regulación epigenética

Expresión y Regulación

¿Qué es la expresión génica?

La expresión génica se refiere al proceso donde la información genética contenida en el ADN se utiliza para **sintetizar productos funcionales, como proteínas o ARN**, que permiten a un organismo funcionar.

¿Qué es la regulación de la expresión génica?

La regulación génica se refiere a los mecanismos y sistemas mediante los cuales las células controlan la **activación**, **la represión o el ajuste preciso de los niveles de expresión de sus genes**, en función de sus necesidades metabólicas, las señales ambientales o el programa de desarrollo y diferenciación celular.

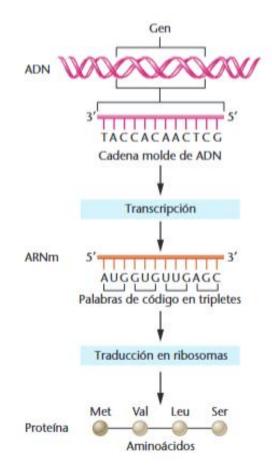
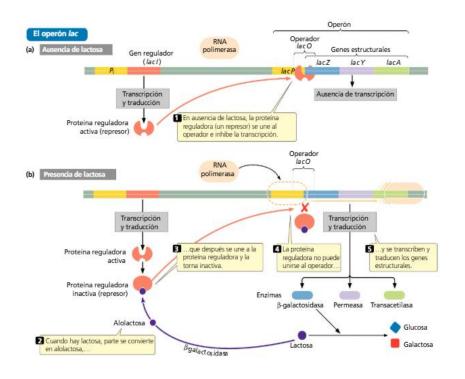



Figura 13.1 de Klug, Conceptos de Genética 10ª Edición

Regulación Procariota

¿Por qué necesita ser regulada la transcripción en procariotas?

Dependen de los recursos disponibles en el medio Flexibilidad metabólica para maximizar el uso de los recursos disponibles

El operón lac (Control negativo)

Control del metabolismo de azúcares como fuente de carbono (E. coli en el intestino) Operón **reprimido en ausencia de lactosa**

En presencia de lactosa

- β-galactosidasa rompe la lactosa en glucosa + galactosa
- β -galactosidasa transforma la lactosa en alolactosa Alolactosa inhibe el repressor y permite la expresión

+ lactosa → expresión del operón *lac*

Regulación Procariota

El operón lac (Control positivo)

La glucosa es la fuente de carbono más eficiente

cAMP + CAP aumenta la eficacia de transcripción del operón *lac*

Baja Glucosa → Alta cAMP → Mayor transcripción Alta Glucosa → Baja cAMP → Menor transcripción

Control positivo y negativo operan de manera simultánea

Condición	Represor	cAMP-CAP	Trancripción lac
- Lactosa, + Glucosa	Activo	Inactivo	No
+ Lactosa, + Glucosa	Inactivo	Inactivo	Ваја
+ Lactosa, - Glucosa	Inactivo	Activo	Alta
- Lactosa, - Glucosa	Activo	Activo	No

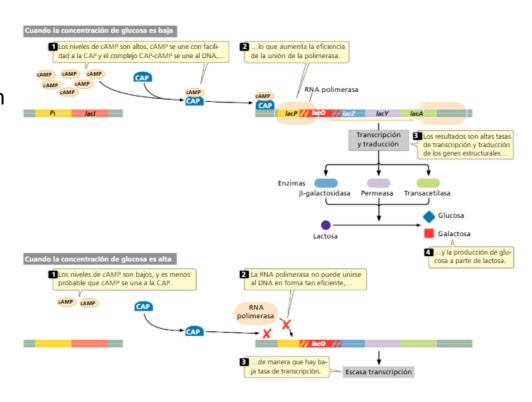


Figura 16.13 de Pierce, Genética: Un enfoque conceptual 5ª edición

Regulación Eucariota

¿Por qué necesita ser regulada la transcripción en eucariotas?

Cada tipo celular requiere de su propia maquinaria para sus funciones específicas

IgM (gen IGHM) principalmente expresado en células B vírgenes, función principal en el reconocimiento primario y activación de la respuesta inmune

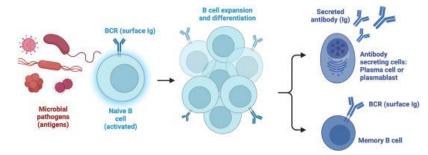
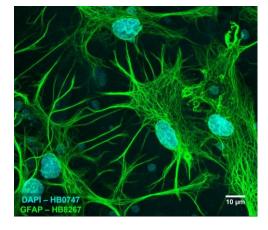
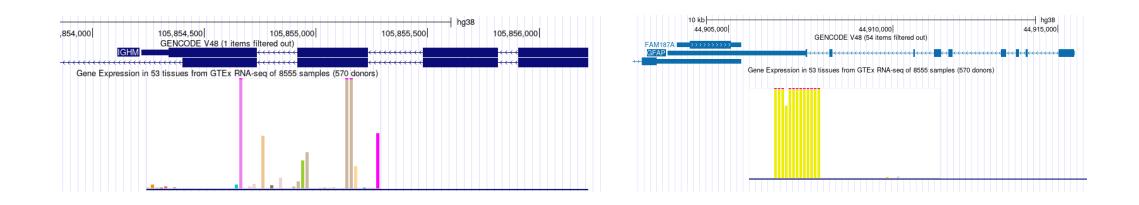


Figura tomada de https://www.sciencedirect.com/topics/veterinary-science-and-veterinary-medicine/naive-b-cell




Imagen tomada de https://hellobio.com/

GFAP codifica una proteína del citoesqueleto perteneciente a los filamentos intermedios de los astrocitos, un tipo de célula glial.

Actividad UCSC

Buscar los genes IGHM y GFAP en el ensamblado GRCh38 de humanos, visualizar su estructura génica y observar los niveles de expresión de los mismos en diferentes tejidos.

Representaremos la pista de GENCODE V48 para la anotación de genes (pack) y la pista de GTEx Gene V8 (full).

¿Se expresan ambos genes en los mismos tejidos? ¿En cuáles? ¿Por qué?

Mecanismos de Regulación

¿Cómo se consigue regular la expresión génica?

Regulación no epigenética

Mecanismos que actúan directamente sobre la secuencia del ADN o sobre productos génicos intermedios, sin modificar de forma estable la estructura de la cromatina.

Mecanismos positivos, activan la expresión, o negativos, reprimen la expresión.

En procariotas

Principalmente durante la iniciación de la transcripción

Operones → ARN policistrónico

Operones

Genes relacionados + Región reguladora

Regulación proximal

En eucariotas

Ocurre en múltiples etapas del proceso

Factores de transcripción con diversas funcionalidades

Regulación de la cromatina (salvo algunas arqueas, los procariotas no presentan cromatina ni histonas)

Regulación proximal + distal

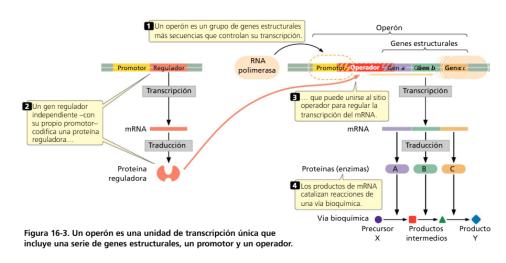


Figura 16.3 tomada de Pierce, Genética: Un enfoque conceptual 5ª edición

Mecanismos de Regulación

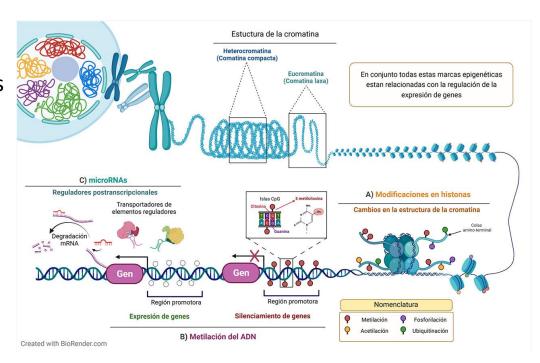
Regulación epigenética

Cambios hereditarios y estables en la expresión génica o en el fenotipo que ocurren sin que se produzcan alteraciones en la secuencia del ADN, mediante modificaciones en la estructura de la cromatina y el ADN

Características clave

No implica cambios en la secuencia de bases del ADN Transitorios y reversibles para responder a las condiciones celulares Mitótica y meióticamente heredables

Tipos de regulación


Modificaciones en las colas de las histonas Cambio en cargas eléctricas o reclutar complejos reguladores

Metilación del ADN

Impedimentos estéricos y complejos represores

ARNs no-codificantes

Algunas bacterias presentan una regulación similar (rápidos y transitorios)

Clasificación de Genes

Según su regulación:

Genes estructurales

Genes fundamentales en el metabolismo, la biosíntesis o estructurales

Traducción simultánea a la transcripción

En procariotas en operones

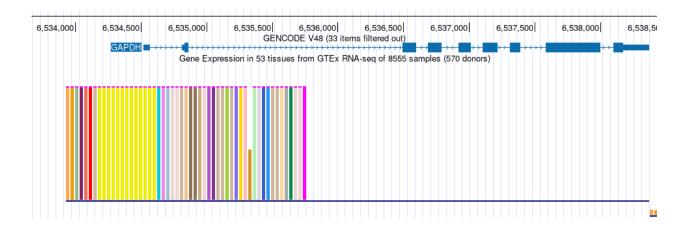
Genes reguladores

Proteínas o ARNs que regulan la expresión de otros genes En procariotas no forman parte de operones

Según su perfil de expresión:

Constitutivos

Genes no regulados y se expresan de manera constitutiva en todas las células Funciones esenciales


<u>Tejido-específicos</u>

Expresados en tipos celulares concretos o momentos concretos del ciclo o estadio celular Funciones muy específicas

Actividad UCSC

Busca la gliceraldehído-3-fosfato deshidrogenasa (GAPDH) en el ensamblado GRCh38 de humanos, observa sus niveles de expresión en diferentes tejidos.

Representaremos la pista de GENCODE V48 para la anotación de genes (pack) y la pista de GTEx Gene V8 (full).

¿En qué tejidos se expresa este gen? ¿Qué diferencia observas con los genes anteriores: IGHM y GFAP? ¿Por qué?

¿Cómo de denomina a los genes con un perfil de expresión como el de GAPDH?

Diferencias Procariotas - Eucariotas

Característica	Procariotas	Eucariotas
Niveles de regulación	Principalmente transcripción	Múltiples niveles
Organización génica	Frecuentemente operones	Promotores para genes individuales
Regulación epigenética	Ausente	Presente
Núcleo		Presente (Transcripción y traducción
	Ausente (Transcripción y traducción acopladas)	separadas en tiempo y espacio)
Control de la transcripción	Simple y frecuentemente en cis	Compleja y combina elementos en cis y trans
Procesamiento de ARNm	Limitado	Extenso
Estabilidad ARNm	Desintegración rápida	Vida media larga y regulada
Control coordinado de genes	Operones	Elementos de respuesta comunes
Tipo de control	Ambos, negativo más abundante	Ambos, positivo más abundante
Plasticidad y complejidad	Flexibilidad para responder a cambios ambientales	Permite la diferenciación celular y la
	rápidos	especialización en organismos multicelulares