Análisis funcional

Genómica Funcional Máster en Genética y Evolución

Motivación

Aparición de técnicas de alto rendimiento para medir los niveles de la expresión génica (chips de ADN, SAGE, secuenciación masiva (mRNA-seq))

- → permiten monitorizar la expresión de miles de genes simultáneamente
- → esto permite detectar los genes que se expresan diferencialmente en dos condiciones (por ejemplo, tejido sano frente a tejido cancerígeno)
- → el resultado es una **lista de genes** que se expresan diferencialmente entre dos condiciones

Surge la cuestión:¿Cómo se puede traducir una lista de genes en conocimiento biológico?

→ Análisis estadístico de las propiedades funcionales de los genes para detectar aquellas funciones que están o enriquecidas o empobrecidas en la lista de genes

Anotaciones funcionales

Homo sapiens

Rattus musculus norvegicus

Gallus gallus

Danio rerio

Drosophila melanogaster

Caenorhabditis elegans

Saccharmoyces Arabidopsis cerevisae

thaliana

UniProt/Swiss-Prot

UniProtKB/TrEMBL

Ensembl IDs

EntrezGene

Affymetrix

Agilent

HGNC symbol

EMBL acc

RefSeq

PDB

Protein Id

IPI....

Biological databases

KEGG pathways

Biocarta pathways

Keywords Swissprot

InterPro Motifs

Gene Ontology

Biological Process Molecular Function Cellular Component

> Gene Expression in tissues

Regulatory elements

miRNA

CisRed

Transcription Factor **Binding Sites**

Bioentities from literature:

Diseases terms Chemical terms

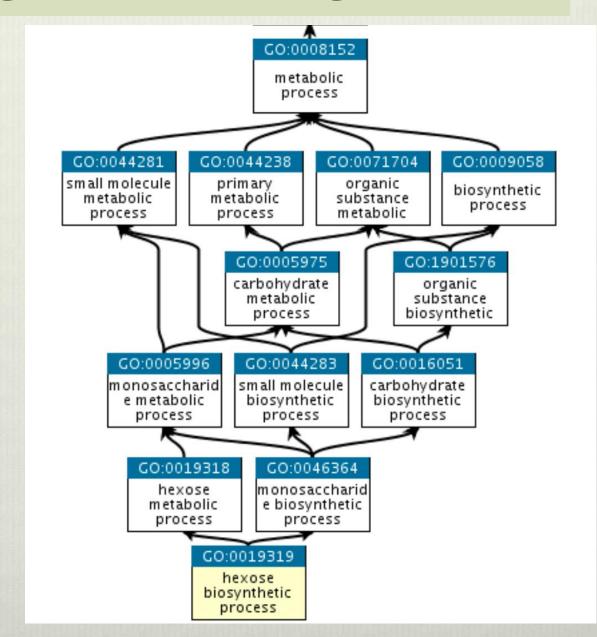
GO ontology

http://geneontology.org/docs/ontology-documentation/

Las tres categorías de términos GO

Función Molecular

Describen las tareas que llevan a cabo los productos génicos. Ejemplos: factor de transcripción, ADN helicasa, etc.


Proceso Biológico

Se trata de los grandes procesos biológicos, como la mitosis o el metabolismo de las purinas, que son llevados a cabo por conjuntos ordenados de funciones moleculares.

Componente Celular

Estructuras subcelulares, localizaciones y complejos macromoleculares. Ejemplos: *núcleo*, *telómero*, *origen de replicación*, etc.

Organización en grafo acíclico dirigido

Análisis funcional

Mediante experimentos se pueden asignar los términos GO a los genes

→ Mediante estas anotaciones se puede caracterizar los genes

Objetivo:

¿Que términos funcionales están sobre o infrarepresentados en una lista de genes?

- →Se puede comparar una lista de genes con un conjunto de genes de referencia (todos los genes del genoma por ejemplo)
- →De una forma muy parecida se comparan dos listas de genes una frente a la otra

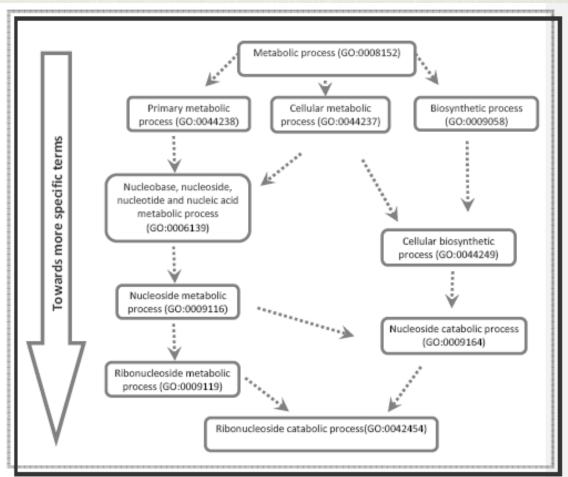
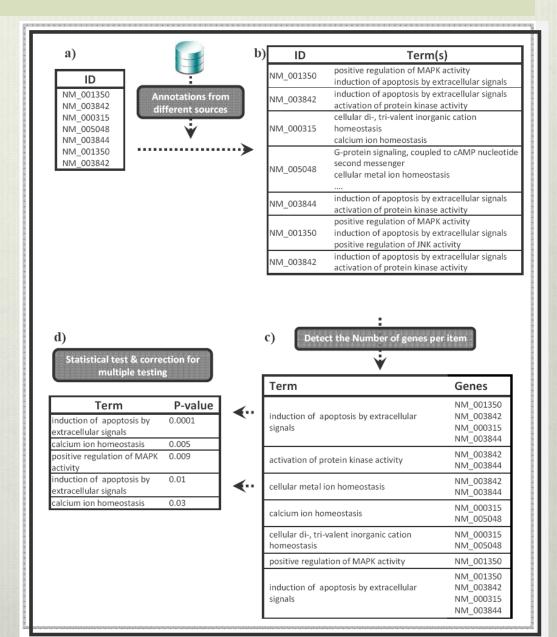


Figure 1: The figure illustrates the structure in which the functional terms are organized in the Gene Ontology by means of a subgraph of the GO term "metabolic process". The terms are ordered in a hierarchical structure called DAG (direct acyclic graph). The categories are ordered from more general (top of the graphic) to more specific terms (bottom of the graphic).

Enriquecimiento relativo

Enriquecimiento relativo:


$$R_e(A_i) = \frac{N_p}{N} \cdot \frac{n}{n_p}$$

Np: número de genes asignados a la anotación A en la lista de genes objeto N: numero de genes en la lista objeto n: numero de genes en la referencia (background gene set)

np: : número de genes asignados a la anotación A en la lista de los genes de referencia

Re=1: no hay diferencias entre la lista analizada y la referencia Re>1: hay mas genes asignados a la anotación en la lista analizada que esperado por azar (enriquecimiento) Re<1: hay menos genes asignados a la anotación en la lista analizada que esperado por azar (empobrecimiento)

→ Se calcula un valor p para comprobar si el Re esta estadísticamente significativo diferente a 1

el valor p

Explorar términos GO:

https://www.ebi.ac.uk/QuickGO

Ejemplo:

$$R_e(A_i) = \frac{N_p}{N} \cdot \frac{n}{n_p}$$

Termino GO: p53 binding

Genes en la base de datos: 100 positivos ||| Número total de genes: 20000 Lista de entrada: 20 positivos ||| Número total de genes: 1000

Enriquecimiento relativo: (20/1000)*(20000/100) = 4

→ 4 veces mas genes con 'p53 binding' en la lista de genes que esperado por azar

Valor p: tabla de contingencia & Fisher Exact Test o Chi2

https://www.socscistatistics.com/ tests/fisher/default2.aspx

		Enter Your Data Below			
	lista	rest			
postive	20	80			
negative	980	18920			

Results				
	lista	rest	Marginal Row Totals	
postive	20	80	100	
negative	980	18920	19900	
Marginal Column Totals	1000	19000	20000 (Grand Total)	

The Fisher exact test statistic value is < 0.00001. The result is significant at p < .05.