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Abstract

Entropy and relative entropy are proposed as features extracted from symbol sequences. Firstly, a proper Iterated Function
System is driven by the sequence, producing a fractal-like representation (CSR) with a low computational cost. Then, two
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1. Introduction

Feature extraction is an important topic in pattern
recognition. The subject is covered in the literature
before, namely Kittler (1986, p. 60). Recognition of
patterns or structures in sequences (Valiveti and
Oommen, 1991) is a particular subject which the
present work deals with. In this context, a sequence
is understood as any string of symbols or data drawn
from a finite alphabet. They can, of course, come from
any other figure, such as a digital image, by a prop-
erly defined ordering method of scanning and reading.

We propose a new feature to be extracted from se-
quences. It is intended for applying either to any of a
battery of classification procedures in use, together
with any other features, or in a characterization pro-
cess such as revealing non-randomness in a sequence.

The novelty of the proposed entropic feature is
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twofold: the procedure for scrutinizing the sequence,
through the Chaos Sequence Representation (CSR)
and the application of Shannon’s entropy and Kull-
back’s relative entropy to the histogram of the above
CSR (see for example Cover and Thomas, 1991).

A chaotic representation for sequences is pre-
sented, which is based on the so-called /terated Func-
tion System (IFS) by Barnsley (1988, p. 82). Jeffrey
(1990) and Oliver et al. (1992) have applied a sim-
ilar method in analysing DNA sequences. The attrac-
tor obtained, here called the Chaos Sequence Repre-
sentation (CSR), is suitabie for processing. The
procedure has proved to be a saving in computa-
tional effort when determining statistics concerning
large subsequences in the whole string. The subject is
described in Section 2.

The histogram of the CSR as well as its eniropy and
relative entropy are theoretically interpreted and dis-
cussed as a suitable feature. Gray-level histograms in
digital images have been reported before by Roman-
Roldén et al. ( 1991 ) in a similar fashion. The spatial
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into multi-length substring analysis here. Section 3
deals with these subjects.

The entropic feature is introduced in Section 4 as
a statistical one. Since an entropic measure is ob-
tained for each substring length from, for example, 1
to M, the result is a feature vector or, graphically, an
entropic profile. The underlying meaning of these
features is given, particularly when a fully random se-
quence is used as a reference. In such a case, this re-
sults in a useful criterion for non-randomness.

Section 5 presents the algorithm used for the com-
putations. Section 6 offers three kinds of applications
as examples: (1) sequences produced by random
number generators, which are intended for full ran-
domness; (2) DNA chains, where nature has im-
printed meaning; (3) digital images.

2. The chaos representation of sequences
2.1. Iterated function system

The basic subject of Chaos Theory to be applied in
this work, used similarly by Jeffrey (1990) and Oliver
etal. (1992), is described by Barnsley (1988, p. 82)
as the Iterated Function System (IFS):

{(X,d); Wa,n=1,2, .., N},

where (X, d) is a metric space and w,, is the nth con-
traction mapping of the form

w: X—> X, such that Vx, ye X,
d(w(x), w(y))<sd(x,y),

where s is the contractivity factor, 0<s<1.

For simplicity, attention is usually restricted to IFSs
of the form {R™; w,,, n=1, 2, ..., N}, where each map-
ping is an affine transformation. Most often M equals
2, since it allows for a simple visual representation.
The IFSs can be represented as follows:

L=l d Bl L)

For an isolated contraction mapping, the attractor
would be a fixed point, according to the contraction
mapping theorem (Barnsley, 1988, p. 76). However,
the attractor for the IFS depends upon the ordering
by which the functions w; are applied. In a random

algorithm, the rule is given through a probability dis-
tribution on the set of functions w. This, together with
the coefficients of {w,}, constitute the IFS code; for
the Sierpinsky triangle with vertices (e;, f;), the code
is given in Table 1.

2.2. The chaos game

For our present interest, the following choices are
selected.

(A) All contractivity factors (a, b, ¢, d in the above
example) are set at 0.5.

(B) The number of functions is constrained to the
number of vertices of a hypercube drawn in the space
X=RM: N=2M,

(C) The constants e;, f; are taken as the co-ordi-
nates (x, y) of the ith vertex. Under these conditions,
attractors are obtained without any structure due to
the IFS itself. The fractal structure, if any, will come
from the probabilities p;.

(D) Lastly a sequence of symbols, drawn from a
finite alphabet, is used to determine the function w,
running each time. Thus, the probability distribution
1s substituted by the frequency vector (called type by
Cover (1991, p. 279)) of the sequence.

A simple procedure to go from a sequence to the
corresponding attractor may be described in the fol-
lowing way (restricting ourselves to N=4 and M=2
without any loss of generality, thus obtaining a pic-
ture on a piece of paper).

(1) Locate four dots (vertices) anywhere on the
paper (without any three of them in a line).

(2) Label them from 1 to 4.

(3) Pick a point anywhere, which will be the initial
point.

(4) Randomly generate symbol-labels (from the
alphabet {1, 2, 3, 4}).

(5) Mark a new point half way between the pre-
vious one and the newly indicated vertex.

The dancing point makes a fractal picture which

Table 1
IFS code for the Sierpinsky triangle

w a b c d e f p

1 0.5 0 0 0.5 1 1 1/3
2 0.5 0 0 0.5 1 50 1/3
3 0.5 0 0 0.5 50 50 1/3




R.P.Romdn-Rolddn et al. / Pattern Recognition Letters 15 (1994) 567-573 569

has been called Chaos Game by Barnsley (1988, p.
2), thus revealing some underlying structure in the
sequence.

2.3. The chaos sequence representation (CSR)

Each and every symbol in the sequence corre-
sponds to one point in the CSR. Four important fea-
tures of the diagrams should be emphasized:

(1) When drawing the CSR, point by point, each
can be allocated by knowing the corresponding sym-
bol and the previous point only.

(2) The location of each point in the CSR allows
us to retrace the whole sequence up to it; thus, the
final point indicates the total sequence.

(3) By partitioning the CSR into 4’ small /-squares,
these correspond one to one with the different /-
lengthened subsequences. Varying / we get a multi-
length subsequence statistical description.

(4) The density of points (number of points in a
given [-square) is the frequency of the corresponding
l-subsequence in the chain; thus, the relative densi-
ties of points correspond to probabilities of finding
subsequences.

As an example, Fig. 1 shows a CSR for (a) the DNA
chain of Human Betaglobin Region Chromosome 11
(HUMHBB) with 73357 bases, and (b) a sequence

generated by a congruential generator with the same
number of symbols.

We take advantage of these properties for both the-
oretical analysis and practical implementation. Some
tools for image processing could be applied to the
CSR. For example, a method of multi-resolution-in-
formation analysis for digital images has recently been
developed by Roman-Roldén et al. (1991). First, the
entropy of the gray-level histogram there is translated
here into the entropy of the point-density histogram
in CSRs; second, different resolutions of images are
translated into different square sizes of CSRs, which
in turn correspond to different subsequence lengths.
In this case, a particular histogram may be used as a
reference, thus obtaining some measure of diver-
gence of the present CSR with respect to it.

3. The density distribution in the CSR
3.1. The type of the sequence

We shall use the geometric terminology (points,
squares, densities, ...) for an easier and intuitive de-
scription. For each /-resolution, we have 4/ squares in
the CSR. Let the series Ny, Ny, ..., N;, ..., Ni, 2, N;=
N, be the number of points in the different squares.
It is the CSR itself, plus a rather arbitrary ordering of

(b)

Fig. 1. CSR for (a) a DNA chain; (b) a random sequence computer generated.
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the cells. By normalizing this series, we obtain the set
of relative frequencies or densities (the type) 2={q,,
Q2 - @is ---» 41}, Which is also called the frequency vec-
tor by Mansuripur (1987).

3.2. The CSR histogram

We shall next consider the set {N;, N,..., N,, ..., N,.}
as a new sequence. By scanning it and counting the
number of occurrences of each N,, and by normali-
zation, we have a new type. We denote it by & ={z,,
Ziy ey Zio s ZN}» Zie=Ni/ 4, 1y being the number of /-
squares with a given number of points k, so that z,
measures the probability of finding a cell with n,
points when one is randomly picked. % stands for the
histogram of densities in the CSR, the CSR-histo-
gram for short. We shall keep in mind that it is also
the histogram of the /-lengthened subsequences that
are contained in a overlapping way in the whole
sequence.

We argue next in favor of the CSR-histogram, in-
stead of the type 2, from the point of view of extract-
ing a feature from the sequence. If two sequences were
to differ only in the interchange of any pair (N, N;),
both must in fact have the same feature, since such a
difference is usually irrelevant. The same may be said
if these were to interchange the pair (n,, n,), as long
as the ordering of cells remains quite arbitrary. Of
course, a relevant feature must be insensitive to these
irrelevant differences. As will soon be seen, entropic
measures of the CSR-histogram fulfill this require-
ment by the symmetry of such measures in respect to
their arguments.

4. Entropic feature
4.1. Entropic measures

Shannon’s entropy. For the resolution /, Shannon’s
entropies of the CSR (2) and the histogram Z? are,
respectively,

H(2P)=% q{" logq",

H(Z®)=Y z{" log z{" .

k

Both entropies could be taken to be absolute fea-

tures (no reference is involved) of the sequence.
However, H(Z) seems to be a better, more signifi-
cant feature than H( 2), since it defers irrelevant dif-
ferences between sequences, as seen in the preceding
paragraph. It means the uncertainty about the num-
ber of points in an /-square randomly chosen from
the CSR. Alternatively, this means the uncertainty
about the number of /~subsequences of a randomly
chosen /-pattern in the sequence.

Kullback’s divergence. It may happen that a certain
histogram is expected under some hypotheses. It may
also occur that a set of sequences is proposed as pat-
terns in a classification problem. In both cases a fea-
ture is needed either to test the hypotheses or to mea-
sure how far the given sequence is from the expected
one(s). The relative entropy (also called directed di-
vergence) of the histogram is a good candidate to ac-
count for the deviation of the current sequence from
areference:

D(Z|2)= Zk: zi log(zi/ 1) ,

where the histogram of reference is #={ry, ry, ..., 1%,
.., 'y}, and the superindexes / have been dropped in
the probabilities and histogram notations for
simplicity.

4.2. Entropic feature for non-randomness

In spite of the several uses that a feature may be
given, in this work we restrict ourselves to consider-
ing the entropic measures of the CSR-histograms as
features of non-randomness. Specifically, the relative
entropy should compare the histogram Z to a refer-
ence #Z which is given by the histogram expected from
a fully random sequence. This subject is left for fur-
ther development, although the result for # is briefly
described next.

A fully random sequence is expected to be pro-
duced by a uniform i.i.d. source. All of these are
equally probable, and therefore all possible subsequ-
ences must also be equally probable for each length /.
As a result, the most probable histogram is not the
degenerated one (zi_4-i1=1, zz.4-:=0), since many
different CSRs have the same histogram, but rather
the binomial one. The question may be posed in terms
of the probabilities of allocating one point after the
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other in the cells of the diagram, and then asking for
the probability of a given number of points appearing
in any /-square. The probability of a point falling in a
given -square is 4=/, and (1 —4-*) out of it. This leads
to the binomial distribution

N
N,

J

P(N;;) = ( ) (47HN(1—4-h)yW=-N)

where P(N,,) is the probability of having N, points in
an /-square from the total number N. Thus, the ex-
pected sequence histogram from a fully random
source is the binomial one % (p, u) with elemental
probability p=4-' and mean pu=N-4-_ Conse-
quently, an appropriate entropic feature for non-ran-
domness in sequences is the relative entropy with re-
spect to the binomial distribution as reference,
D(Z| #). It should be noticed that the condition (B)
in Section 2.2 demands an alphabet with cardinal
N=2M_This is a constraint imposed upon the num-
bers generated by the source, which generally pro-
duces numbers in the interval [0,1). A transforma-
tion has to be made, based on to the number of
vertices selected. On the other hand, the procedure
converts the number of intervals N into dimensions
of the CSR, M'=log N, as well as subsequence length
lin spatial resolution.

4.3. The underlying meaning of the entropic features

The entropic features may be theoretically
grounded. For this, complete randomness (if it ex-
ists; see Knuth, 1981, p. 142) is supposed to be void
of information at all. Conversely, a practical concept
of information requires that it rely on the deviation
from randomness. In this context, sequences can be
thought of as messages emitted by generators, this in-
formation being a natural measure of the partial lack
of randomness.

Let us notice that a uniform CSR has the maxi-
mum entropy H(2) at each resolution /, yet such a
CSR is not informative at all in the exposed sense.
However, the entropy of the histogram H(2") goes to
zero when N—co. Thus, the entropy of the histogram
is justified from the Information Theory point of
view, as well as by heuristic considerations.

The usual understanding of the relative entropy as
a measure of the gain of information is fully applica-

ble here. It represents the variation of information
when passing from a very random sequence to the
present one, which is an appealing meaning indeed.

The same argument has been proposed (Romdn-
Rolddn et al., 1991) by looking for meaning, infor-
mation conveying in images by means of the entropy
of the histogram instead of the conventional entropy
of the image (similar to H(Q) for a sequence).

5. Examples

We present next some examples in which the en-
tropic profile is extracted as a feature from certain
kinds of sequences. In all three examples, both the
entropy and the relative entropy is drawn versus the
resolution level /. The binomial profile is included in
the entropy representation, as a reference for full ran-
domness. An algorithm for computations is straight-
forwardly derived from the IFS structure itself, as ex-
posed in Sections 2.1. and 2.2. For all /</,,,, the
mean histogram has been considered from a number
of CSRs in such a way that the same number of cells
are computed, namely 4= For this, the total num-
ber of symbols in the sequence must be equally spread
in 4~>—! CSRs, resulting in the same mean (points
per cell) for all /.

Fig. 2 shows the entropic profile extracted from se-
quences generated by three different random number
generators. N=4 and M =2 have been used. There-
fore, each random number belonging to the interval
[0, 1) has been classified in the subintervals [0,
0.25), [0.25,0.5), and so on. The CSR has (2*)/=4/
squares. A sequence of 122880 numbers has been an-
alysed, allowing for /=1 to 6 with mean x =30 points
per /-square. The A-carry generator looks much bet-
ter than others, as its entropy is very close to the bi-
nomial distribution, which has been omitted for this
reason.

Fig. 3 presents the results for four different DNA
sequences. Since there are 4 constituent bases, N=4
and M=2 have been used again. The profiles show
that the two human sequences (HUMFIXG and
HUMAFP) clearly differ from both the bacterial
(ECUNC) and the viral one (PT7CG) at all resolu-
tion levels but the third (trimere).

Fig. 4 shows the results for three binary images. The
pixels have been read in an appropriate ordering so
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Entropy (bits) b Relative Entropy (bits)
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4
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1F F E
0.001 : L L : 0.001
o s . . o 1 2 3 4 5 6
1 2 3 4 5 6 Resolution (1)
Resolution (1)
—— A-carry —4— congruential 1
—*— A-carry —“— Congruential 1 —&- Congruential 2 —5 congruential 2
Fig. 2. Entropic profiles for three different random number generators.
(a) Entropy (bits) (b) Relative entropy (bits)
2.8 2.8 I

that, for all spatial resolutions, black or white regions
in the image lead to uniform substrings in the se-
quence. Because of the binary character of this kind
of sequence, N=2 and M=1 have been used here,
thus the CSR lies in the straight line.

Some general observations can be made about the

10.4

10.3

r0.2

00. 1

2.2t ; } 1

2.2

0
1 2 3 4 5 5
Resolution (1) Resolution (1)
—&- ECUNC —=— HSPCI —£— PT7CG —== ECUNC —4- HSPCI —&~ PT7CG
—— Binomial —— HUMFIXG ~%= HUMAFP = HUMFIXG —$— HUMAFP

Fig. 3. Entropic profiles for four DNA chains.

entropic profiles. The entropy measure alone does not
reveal how far the histogram is from the reference.
For instance, the entropy of the image Photo 1 is about
equal to the entropy of the binomial distribution for
/=17, yet their relative entropies are quite different.
However, the entropy profiles supply complemen-
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(a) Entropy (bits)
6 S

1 2 3 4 5 6 7 8
resolution (1)

—— Binomial —= Photography 1

—= Photography 2 =~ Comic

(b) Relative entropy (bits)
200

200

150

11560

100

60

Resolution (1)

— Photography 1 ~=— Photography 2

—=— Comic

Fig. 4. Entropic profiles for three binary images.

tary information with respect to the relative entropy
profiles. A binomial instead of a degenerated histo-
gram accounts for the expected fluctuations from a
fully random source, which would have zero entropy.
Therefore, an entropy higher than the binomial sug-
gests a 2-type more grouped, thus some subsequ-
ences occur more frequently than others. Conversely,
a lower entropy of the histogram corresponds to a 9-
type closer to a plain one than expected; this fact
points to a Markovian dependence or periodic, de-
terministic sources.

6. Conclusions

The entropy and the relative entropy of the histo-
gram of the Chaos Sequence Representation has been
suggested as features extracted from sequences as a
function of the subsequence length, so given place to
entropic profiles.

The Chaos Sequence Representation, derived from
the Iterated Function Systems, has proved to allow
for low computational complexity in scanning the se-
quence for large subsequences.

The entropic features of the histogram exhibit high
discrimination capability in representing patterns in
sequences, while they are theoretically grounded

through Information Theory.

A source of random sequences have been consid-
ered as a reference in an example for detecting and
quantifying non-randomness.
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